Pathological Brain Tumour Diagnosis: Then and Now

Peter C. Burger, MD

Cure for Life Foundation Brain Cancer Research Visiting Academic
Pathological Analysis – Then and Now

• Classification - what kind of tumour is it?
• Grading - how bad is it?
• What is the molecular subtype?
• Is there a therapeutic target?
ca. 1865
RUSTY-CAPPED SPARROWS
sexes similar

winter

summer

juv.

CHIPPING SPARROW

for comparison with winter Chipping Sparrow, above

juv.

CLAY-COLORED SPARROW
(See p. 283)

imm.

FIELD SPARROW

SWAMP SPARROW

juv.

RUFIOUS-CROWNED SPARROW

AMERICAN TREE SPARROW
Classic Histopathological Analysis

• Classification - what kind of tumour is it?
• Grading - how bad is it?
Tumour Grading

- I
 Low grade
- II
- III
 High grade
- IV
Grade I Grade II Grade III
WHO “Blue Books”
Evolution of Diagnostic Techniques

• Histology
• Histology plus immunohistochemistry
 – e.g. meningioma with EMA
• Histology plus molecular, e.g.
 – Oligodendroglioma with 1p/19q
 – Astrocytoma with p53
 – Glioblastoma with $MGMT, IDH1$
• Molecular plus histology
• Molecular only
Evolution of Diagnostic Techniques

- Histology
- Histology plus immunohistochemistry
 - e.g. meningioma with EMA
- Histology plus molecular, e.g.
 - Oligodendrogioma with 1p/19q
 - Astrocytoma with p53
 - Glioblastoma with MGMT, IDH1
- Molecular plus histology
- Molecular only
Meningioma – Immunohistochemistry for EMA
Immunohistochemical Profile of Diffuse Astrocytoma

ATRX p53 Mutant IDH1

A TRX p53 Mutant IDH1
Infiltrating Edge of Astrocytoma – Mutant IDH1
Histology/Immunohistochemistry

Advantages
- Assures presence of diagnostic tissue
- Distinguish tumour from nontumour
- Cheap (sort of)
- Fast (usually)
- Vast past experience
- A surrogate for molecular data in some cases
- Good starting point, context, for molecularly-based studies to subclassify tumor and identify therapeutic targets

Disadvantages
- Depends on specimen size and tissue sampling
- Subjective
- Experience dependent
- Broad categorizations (usually)
- No identification of specific treatment targets
Histology/Immunohistochemistry

Advantages
- Assures presence of diagnostic tissue
- Distinguish tumour from nontumour
- Cheap (sort of)
- Fast (usually)
- Vast past experience
- A surrogate for molecular data in some cases
- Good starting point, context, for molecularly-based studies to subclassify tumor and identify therapeutic targets

Disadvantages
- Depends on specimen size and tissue sampling
- Subjective
- Broad categorizations (usually)
- No identification of specific treatment targets
Pathological Analysis – Now (and Future)

- Classification - what kind of tumour is it?
- Grading - how bad is it?
- What is the molecular subtype?
- Is there a therapeutic target?
1p-19q test
Proposed Mechanism For Derivative Chromosome In Oligodendroglialomas

Griffin et al.. J Neuropathol Exp Neurol 2006;65:988-994
Proposed Mechanism For Derivative Chromosome In Oligodendrogliomas

KRAS Exon 2 Point Mutation (p.G12D)
KRAS Exon 2 Point Mutation (p.G12D)
Molecular Analysis

- **Advantages**
 - Fast (potentially)
 - Identification of specific molecular changes
 - Ideally, identifies responsive (lastingly) therapeutic targets

- **Disadvantages**
 - Cost, but rapidly getting cheaper
 - Requires special equipment and experience not available in many laboratories
 - May tax laboratories trying to meet demands for multiple new tests for multiple organ systems
 - Potentially overwhelming amounts of data
 - Most abnormalities of no proven specific utility
Few CNS Tumours Have Therapeutically Exploitable Molecular Targets

- Pilocytic astrocytoma (*BRAFv600E* mutation: Dabrafenib, Vemurafenib)
- Ganglion cell tumours (*BRAFv600E* mutation: Dabrafenib, Vemurafenib)
- Pleomorphic xanthoastrocytoma (*BRAFv600E* mutation: Dabrafenib, Vemurafenib)
- Subependymal giant cell astrocytoma (*mTOR* inhibitors: Rapamycin, Everolimus)
- Medulloblastoma (*shh* inhibitor: LDE or Vismodegib)
<table>
<thead>
<tr>
<th>TUMOUR TYPE</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDH1/2</td>
</tr>
<tr>
<td></td>
<td>IMH MUT.</td>
</tr>
<tr>
<td>A</td>
<td>POS</td>
</tr>
<tr>
<td>OA</td>
<td>POS</td>
</tr>
<tr>
<td>O</td>
<td>NOT</td>
</tr>
</tbody>
</table>

Legend:
- **POS**
- **NEG**
- **NOT DONE**
<table>
<thead>
<tr>
<th>TUMOUR TYPE</th>
<th>MOLECULAR TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDH1/2</td>
</tr>
<tr>
<td></td>
<td>MUT.</td>
</tr>
<tr>
<td></td>
<td>MUT.</td>
</tr>
<tr>
<td></td>
<td>GAIN 7</td>
</tr>
<tr>
<td></td>
<td>CODELET.</td>
</tr>
<tr>
<td></td>
<td>ATRX</td>
</tr>
<tr>
<td></td>
<td>ALT</td>
</tr>
<tr>
<td></td>
<td>T.B.N.</td>
</tr>
<tr>
<td></td>
<td>T.B.N.</td>
</tr>
</tbody>
</table>

- **IDH1/2**: MUT. (POS), MUT. (NEG), GAIN 7 (POS), CODELET. (POS), ATRX (POS), ALT (POS), T.B.N. (NOT DONE), T.B.N. (NOT DONE)
- **p53**: MUT. (POS), GAIN 7 (POS), CODELET. (POS), ATRX (POS), ALT (POS), T.B.N. (NOT DONE), T.B.N. (NOT DONE)

Legend:
- **POS**: Green
- **NEG**: Red
- **NOT DONE**: Grey
Requirements for Development and Implementation of Molecular Markers

- Innovation
- Acceptance
- Communication
- Coordination
- Prioritization

- Realism
 - Number of specific tests requested, and projected volume of each
 - Cost/benefit analysis
- Financial support for development and maintenance